First semestral examination 2011 B.Math. (Hons.) IInd year Algebra III — B.Sury December 5, 2011 — 10 AM - 1 PM Attempt only FIVE questions. Any score of more than 80 will be equated to 80. Be Brief!

Q 1. (16 marks)

Prove that both the polynomials $X^3 + X + 1$ and $X^3 + X^2 + 1$ are irreducible over \mathbf{Z}_2 . Further, prove that the two fields $\mathbf{Z}_2[X]/(X^3 + X + 1)$ and $\mathbf{Z}_2[X]/(X^3 + X^2 + 1)$ are isomorphic.

OR

Determine all $c \in \mathbf{Z}_3$ such that $\mathbf{Z}_3[X]/(X^3 + X^2 + cX + 1)$ is a field.

Q 2. (18 marks)

Let A be a commutative ring with unity. If I is an ideal which is maximal with respect to the property of not being principal, prove that I is a prime ideal. Further, if I is such an ideal, prove that A/I is a principal ideal ring.

OR

Let A be a commutative ring with unity, I be an ideal and P_1, \dots, P_m be prime ideals such that $I \subseteq P_1 \cup P_2 \cup \dots \cup P_m$. Then show that $I \subseteq P_i$ for some *i*.

Q 3. (17 marks)

Prove that every ideal of $\mathbf{Z}[i][X]$ is finitely generated.

OR

Show that the ring C[0, 1] is not Noetherian.

Q 4. (17 marks)

If α is an algebraic integer (that is, it is a root of a monic integral polynomial), show that it satisfies a unique monic, irreducible polynomial over **Q** and that this polynomial must have coefficients in **Z**. *Hint:* You may use Gauss's lemma.

OR

Show that if $f = \sum_{i=0}^{m} a_i X^i$, $g = \sum_{j=0}^{n} b_j X^j \in (\mathbb{Z}/1024\mathbb{Z})[X]$ are such that fg = 0, then $a_i b_j = 0$ for all i, j.

Q 5. (17 marks) Prove that the group \mathbf{Q}^+ of positive rational numbers is a free abelian group of countably infinite rank.

Hint: Show that the set of primes provides a basis.

OR

Prove that any finitely generated, torsion-free module over a PID is free.

Q 6. (18 marks)

Show that there is no commutative ring A with unity such that A[X] is isomorphic to the ring of integers.

Hint: Show that such an A must be isomorphic as a group to $n\mathbf{Z}$ and derive a contradiction.

OR

If A is an integral domain, and I, J are ideals such that IJ is a principal ideal, prove that I, J are finitely generated.

Q 7. (19 marks)

Prove that $X^2 + Y^2 - 1$ is irreducible in K[X, Y] for any field K of characteristic different from 2.

Hint: Use Eisenstein's criterion to a suitable UFD.

\mathbf{OR}

Let $p \equiv 1$ or 3 mod 8 be a prime. Prove that p is expressible as $x^2 + 2y^2$ for some integers x, y.

Hint: You may assume that $\mathbf{Z}[\sqrt{-2}]$ is a UFD.

Q 8. (18 marks)

Let A be an abelian group and B be a subgroup such that $A/B \cong \mathbb{Z}^n$ for some n. Prove that A is isomorphic as an abelian group with $B \oplus \mathbb{Z}^n$.

Hint: Use the fact that a short exact sequence of modules splits if the quotient is a free module.

OR

Prove that every PID is a UFD and give an example (without proof) of a UFD which is not a PID.

Q 9. (16 marks)

Let A be a local ring with the maximal ideal **m**. Let M be a finitely generated A-module and $x_1, \dots, x_n \in M$ be elements such that $M/\mathbf{m}M$ is generated as an A/\mathbf{m} -module by the images of the x_i 's. Then prove that M is generated by the x_i 's.

Hint: You may use the NAK lemma.

OR

Let A be a commutative ring with unity. and M be a finitely generated A-module. If $\theta : M \to M$ is an onto A-module homomorphism, prove that θ is 1-1 as well.

Let A be a commutative ring with unity.

(i) If I, J are ideals such that there exists an onto A-module homomorphism from A/I to A/J, prove that $I \subseteq J$.

(ii) If an ideal P is free as an A-module, prove that P must be principal.

OR

Let A be an $n \times n$ matrix over an algebraically closed field K. Prove that there is an invertible $n \times n$ matrix P over K such that $PAP^{-1} = A^t$, the transpose of A.

Hint: Use the Jordan form.

Q 10. (18 marks)